Friday, 13 January 2017

Saisonbereinigt Zentriert Gleitend

Spreadsheet-Implementierung der saisonalen Anpassung und exponentieller Glättung Es ist einfach, saisonale Anpassung durchzuführen und exponentielle Glättungsmodelle mit Excel anzupassen. Die unten aufgeführten Bildschirmbilder und Diagramme werden einer Tabellenkalkulation entnommen, die eine multiplikative saisonale Anpassung und eine lineare Exponentialglättung für die folgenden vierteljährlichen Verkaufsdaten von Outboard Marine darstellt: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für Demonstrationszwecke verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es nur eine Glättungskonstante gibt, die optimiert werden soll. In der Regel ist es besser, Holt8217s Version, die separate Glättungskonstanten für Ebene und Trend hat. Der Prognoseprozess verläuft wie folgt: (i) Die Daten werden saisonbereinigt (ii) sodann für die saisonbereinigten Daten über lineare exponentielle Glättung Prognosen erstellt und (iii) schließlich werden die saisonbereinigten Prognosen zur Erzielung von Prognosen für die ursprüngliche Serie herangezogen . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt in der Saisonbereinigung besteht darin, einen zentrierten gleitenden Durchschnitt (hier in Spalte D) zu berechnen. Dies kann erreicht werden, indem der Durchschnitt von zwei einjährigen Durchschnittswerten, die um eine Periode relativ zueinander versetzt sind, genommen wird. (Eine Kombination von zwei Offset-Durchschnittswerten anstatt eines einzigen Mittels wird für die Zentrierung benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt besteht darin, das Verhältnis zum gleitenden Durchschnitt zu berechnen. Wobei die ursprünglichen Daten durch den gleitenden Durchschnitt in jeder Periode dividiert werden - was hier in Spalte E durchgeführt wird. (Dies wird auch Quottrend-Cyclequot-Komponente des Musters genannt, sofern Trend - und Konjunktur-Effekte als all das angesehen werden können Bleibt nach einer Durchschnittsberechnung über ein ganzes Jahr im Wert von Daten bestehen. Natürlich können die monatlichen Veränderungen, die nicht saisonal bedingt sind, durch viele andere Faktoren bestimmt werden, aber der 12-Monatsdurchschnitt glättet sie weitgehend Wird der geschätzte saisonale Index für jede Jahreszeit berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel erfolgt. Die Durchschnittsverhältnisse werden dann neu skaliert, so dass sie auf das genau 100-fache der Anzahl der Perioden in einer Jahreszeit, oder 400 in diesem Fall, das in den Zellen H3-H6 erfolgt, summieren. Unten in der Spalte F werden VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es repräsentiert. Der mittlere gleitende Durchschnitt und die saisonbereinigten Daten enden wie folgt: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in derselben Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten beginnend in Spalte G. Über der Prognosespalte (hier in Zelle H9) wird ein Wert für die Glättungskonstante (alpha) eingetragen Zur Vereinfachung wird ihm der Bereichsname quotAlpha. quot zugewiesen (Der Name wird mit dem Befehl quotInsertNameCreatequot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die hier verwendete Formel für die LES-Prognose ist die rekursive Einzelformel des Brown8217s-Modells: Diese Formel wird in der Zelle entsprechend der dritten Periode (hier Zelle H15) eingegeben und von dort nach unten kopiert. Beachten Sie, dass sich die LES-Prognose für den aktuellen Zeitraum auf die beiden vorherigen Beobachtungen und die beiden vorherigen Prognosefehler sowie auf den Wert von alpha bezieht. Somit bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich könnten wir statt der linearen exponentiellen Glättung einfach statt der linearen exponentiellen Glättung verwenden, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln erfordern würde, um das Niveau und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen von den Istwerten berechnet. Der Quadratwurzel-Quadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Das ergibt sich aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)). 2) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, da das Modell nicht tatsächlich mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können das quotSolverquot verwenden, um eine genaue Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier angezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu zeichnen und ihre Autokorrelationen zu berechnen und zu zeichnen, bis zu einer Saison. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit Hilfe der CORREL () - Funktion berechnet, um die Korrelationen der Fehler selbst mit einer oder mehreren Perioden zu berechnen - Einzelheiten sind im Kalkulationsblatt dargestellt . Hier ist ein Diagramm der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei Null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas mühsam Saisonale Anpassungsprozess nicht vollständig erfolgreich war. Allerdings ist es eigentlich nur marginal signifikant. 95 Signifikanzbanden zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind ungefähr plus-oder-minus 2SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hier ist n gleich 38 und k variiert von 1 bis 5, so daß die Quadratwurzel von - n-minus-k für alle von etwa 6 ist, und daher sind die Grenzen für das Testen der statistischen Signifikanz von Abweichungen von Null grob plus - Oder-minus 26 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den Root-mean-squared-Fehler beobachten, der nachfolgend erläutert wird. Am Ende der Kalkulationstabelle wird die Prognoseformel quasi in die Zukunft gestartet, indem lediglich Prognosen für tatsächliche Werte an dem Punkt ausgetauscht werden, an dem die tatsächlichen Daten ablaufen - d. h. Wo die Zukunft beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellreferenz eingefügt, die auf die Prognose für diese Periode hinweist.) Alle anderen Formeln werden einfach von oben nach unten kopiert: Beachten Sie, dass die Fehler für die Prognosen von Die Zukunft werden alle berechnet, um Null zu sein. Dies bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern lediglich die Tatsache, dass wir für die Vorhersage davon ausgehen, dass die zukünftigen Daten den Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen wie folgt aus: Mit diesem für α-Periodenprognosen optimalen Wert von alpha ist der prognostizierte Trend leicht nach oben, was auf den lokalen Trend in den letzten 2 Jahren zurückzuführen ist oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist normalerweise eine gute Idee, zu sehen, was mit der langfristigen Trendprojektion geschieht, wenn Alpha variiert wird, weil der Wert, der für kurzfristige Prognosen am besten ist, nicht notwendigerweise der beste Wert für die Vorhersage der weiter entfernten Zukunft sein wird. Dies ist beispielsweise das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha setzt das Modell mehr Gewicht auf ältere Daten Seine Einschätzung des aktuellen Niveaus und Tendenz und seine langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend wider, eher als der jüngste Aufwärtstrend. Dieses Diagramm zeigt auch deutlich, wie das Modell mit einem kleineren Wert von alpha langsamer ist, um auf quotturning pointsquot in den Daten zu antworten und daher tendiert, einen Fehler des gleichen Vorzeichens für viele Perioden in einer Reihe zu machen. Die Prognosefehler von 1-Schritt-Vorhersage sind im Mittel größer als die, die zuvor erhalten wurden (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null deutlich. Als Alternative zum Abkürzen des Wertes von Alpha, um mehr Konservatismus in Langzeitprognosen einzuführen, wird manchmal ein Quottrend-Dämpfungsquotfaktor dem Modell hinzugefügt, um die projizierte Tendenz nach einigen Perioden abflachen zu lassen. Der letzte Schritt beim Erstellen des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu veranschaulichen. Somit sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: Erstens Berechnen Sie den RMSE (root-mean-squared Fehler, der nur die Quadratwurzel der MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion zweimal des RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Ein-Perioden-Vorausprognose ungefähr gleich der Punktvorhersage plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr Hier ist die RMSE anstelle der Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil sie auch die Zufallsvariationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte Prognose werden dann reseasonalisiert. Zusammen mit der Prognose, durch Multiplikation mit den entsprechenden saisonalen Indizes. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste künftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95-Konfidenzintervall von 273,2-227,4 218,4 auf 273,2227,4 328,0 liegt. Das Multiplizieren dieser Limits durch Decembers saisonalen Index von 68,61. Erhalten wir niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punktprognose von 187,4. Die Vertrauensgrenzen für Prognosen, die länger als eine Periode vorangehen, werden sich in der Regel aufgrund der Unsicherheit über das Niveau und die Tendenz sowie die saisonalen Faktoren erweitern, da der Prognosehorizont zunimmt, aber es ist schwierig, diese im allgemeinen durch analytische Methoden zu berechnen. (Die geeignete Methode zur Berechnung der Vertrauensgrenzen für die LES-Prognose ist die Verwendung der ARIMA-Theorie, aber auch die Unsicherheit in den saisonalen Indizes ist eine andere.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose über mehrere Perioden bevorzugen, Fehler zu berücksichtigen, ist Ihre beste Wette, empirische Methoden zu verwenden: Zum Beispiel, um ein Vertrauensintervall für eine 2-Schritt-Vorausprognose zu erhalten, könnten Sie eine weitere Spalte auf der Kalkulationstabelle erstellen, um eine 2-Schritt-Voraus-Prognose für jeden Zeitraum zu berechnen Durch Booten der Ein-Schritt-Voraus-Prognose). Berechnen Sie dann die RMSE der 2-Schritt-Voraus-Prognosefehler und verwenden Sie diese als Grundlage für ein 2-stufiges Konfidenzintervall. Moving Averages Phasenverschiebung ist die Differenz der Erkennung von Wendepunkten zwischen ursprünglichen und geglätteten Daten. Dieser Effekt ist ein Nachteil, da er eine Verzögerung beim Erfassen der Wendepunkte der Zeitreihen, insbesondere in der aktuellsten Periode, verursacht. Die symmetrischen, zentrierten Bewegungsdurchschnitte sind gegen diesen Effekt resistent. Am Ende (und am Anfang) der Zeitreihe können jedoch nicht symmetrische Zeitreihen verwendet werden. Um die geglätteten Werte in den beiden Enden der Zeitreihen zu berechnen, wird das asymmetrische Filter verwendet, jedoch verursachen sie den Phaseneffekt. TagsKeywords: Sie können klicken und ziehen in den Plot-Bereich zu vergrößern Sie können Maus über Datenpunkte zu sehen, den tatsächlichen Wert, der graphed ist Wenn es eine Legende-Box, klicken Sie auf den Seriennamen, um sie zu verstecken Einleitung Gleitende Mittelwerte sind arithmetische Mittelwerte angewendet Zu aufeinanderfolgenden Zeitspannen mit fester Länge der Reihe. Wenn sie auf die ursprünglichen Zeitreihen angewandt werden, erzeugen sie eine Reihe von gemittelten Werten. Die allgemeine Formel für den gleitenden Durchschnitt M der Koeffizienten ist: Die gleitenden Durchschnittskoeffizienten werden Gewichte genannt. Die Größe p f 1 ist die gleitende mittlere Ordnung. Der gleitende Durchschnitt wird zentriert genannt, wenn die Anzahl der Beobachtungen in der Vergangenheit gleich der Zahlbeobachtung in der Zukunft ist (d. H. Wenn p gleich f ist). Gleitende Mittelwerte ersetzen die ursprünglichen Zeitreihen durch gewichtete Mittelwerte der aktuellen Werte, p Beobachtungen vor der aktuellen Beobachtung und f Beobachtungen nach der aktuellen Beobachtung. Sie werden verwendet, um die ursprünglichen Zeitreihen glatter zu machen. Die Tabelle gibt die Anzahl der Passagiere wieder, die 2001 von Finnland gemeldet wurden. Die gleichen Daten sind in der Tabelle aufgeführt: Arten der gleitenden Durchschnittswerte Auf der Grundlage der Gewichtungsmuster können die gleitenden Mittelwerte: Symmetrisch das für die Berechnung der gleitenden Mittelwerte verwendete Gewichtungsmuster sein Ist um den Zieldatenpunkt symmetrisch. Durch symmetrische Bewegungsdurchschnitte ist es nicht möglich, die geglätteten Werte für die ersten p - und letzten p-Beobachtungen (für symmetrische gleitende Mittelwerte pf) zu erhalten. Asymmetrisch ist das zur Berechnung von Bewegungsdurchschnitten verwendete Wägungsmuster nicht symmetrisch um den Zieldatenpunkt. Bewegungsdurchschnitte können auch nach ihrem Beitrag zum Endwert klassifiziert werden als: Einfache gleitende Mittelwerte, dh die gleitenden Mittelwerte, für die alle Gewichte gleich sind Einfache Bewegungsdurchschnitte alle Beobachtungen tragen gleichermaßen zum Endwert bei. Unnötig zu sagen, alle einfachen gleitenden Durchschnitte sind symmetrisch. Formal sind für den symmetrischen gleitenden Durchschnitt der Ordnung P 2p 1 alle Gewichte gleich 1P. Das Bild unten vergleicht den Glättungsgrad, der durch die Anwendung von 3- und 7-Term-einfachen gleitenden Durchschnitten erreicht wird. Die extremen Beobachtungen (z. B. April 2010 oder Juni 2011) haben einen geringeren Einfluss auf den längeren Durchschnitt als auf den kürzeren. Nicht einfache gleitende Mittelwerte, d. h. die gleitenden Mittelwerte, für die alle Gewichte nicht gleich sind. Die speziellen Fälle von nicht einfachen gleitenden Durchschnitten sind: zusammengesetzte gleitende Mittelwerte, die durch Komponieren eines einfachen gleitenden Mittelwerts der Ordnung P erhalten werden, deren Koeffizienten alle gleich 1 P und ein einfacher gleitender Durchschnitt der Ordnung Q sind, deren Koeffizienten alle gleich sind Zu 1 Q. Asymmetrische gleitende Mittelwerte. Eigenschaften der gleitenden Mittelwerte Die gleitenden Mittelwerte glatt machen die Zeitreihen. Wenn sie auf eine Zeitreihe angewendet werden, reduzieren sie die Amplitude der beobachteten Fluktuationen und wirken als Filter, der unregelmäßige Bewegungen von ihr entfernt. Die gleitenden Mittelwerte mit einem geeigneten Gewichtungsmuster können verwendet werden, um Zyklen einer bestimmten Länge in der Zeitreihe zu eliminieren. Im X-12-ARIMA saisonalen Anpassungsverfahren werden verschiedene Arten von gleitenden Durchschnittswerten verwendet, um die Tendenz - und saisonale Komponente abzuschätzen. Wenn die Summe der Koeffizienten gleich 1 ist, behält der gleitende Durchschnitt den Trend bei. Gleitende Mittelwerte haben zwei wichtige Vorgaben: Sie sind nicht robust und können von Ausreißern stark beeinträchtigt werden Die Glättung an den Enden der Serie kann nicht durchgeführt werden, sondern mit asymmetrischen gleitenden Durchschnitten, die Phasenverschiebungen und Verzögerungen bei der Erkennung von Wendepunkten einführen Spielen symmetrische gleitende Mittelwerte eine wichtige Rolle, da sie keine Phasenverschiebung in der geglätteten Reihe einführen. Um jedoch keine Informationen an den Serienenden zu verlieren, werden sie entweder durch Ad-hoc-asymmetrische Bewegungsdurchschnitte ergänzt oder auf die durch Prognosen abgeschlossene Reihe angewendet.


No comments:

Post a Comment